A Comparative Analysis of Prescribed Syllabus
and Textbook Content of Higher Secondary
Computer Science in COHSEM, Manipur

Ningthoujam Chetan Das
Wahengbam Jyotirmoy Singh

ABSTRACT

The alignment between curricular objectives and textbook content is
a foundation of effective education, particularly in academic education,
where precision and comprehensiveness are most important in teaching
and learning. The paper conducts an in-depth comparative analysis of the
syllabus prescribed and the textbook for class 12 computer science by the
Council of Higher Secondary Education (COHSEM), which focuses on
the first two chapters: Exception and File Handling in Python and Stack.
Through a very careful and detailed content analysis, this study identifies
areas of orderly and consistent relation, inconsistencies, and offers insight
into curriculum design and instructional strategies. The findings emphasize
the necessity of continuous alignment reviews to ensure that educational
resources have strong matches with the educational syllabus, textbook

content, and technological demands of future needs.

Key words: Content Analysis, Curriculum, Python, Stack,
Syllabus-Textbook Alignment.

INTRODUCTION

The teaching and learning of Computer Science at the higher secondary
level demand a curriculum that is well-aligned with its corresponding
textbook to ensure effective comprehension and skill development among
learners. A thorough examination of alignment between the prescribed

syllabus of the Council of Higher Secondary Education, Manipur

Vol. XXIII, No. XXVI, ISSN No. 2347-4777 (Peer-Reviewed, UGC-CARE listed Journal) 203

International Journal of Cultural Studies and Social Sciences

(COHSEM), and the content of the officially prescribed textbook 1is

essential to maintain curricular integrity and instructional relevance.

This paper undertakes a comprehensive comparative analysis of the
syllabus for Class 12 Computer Science, as prescribed by COHSEM,
and the content of its prescribed textbook, focusing on the first two
chapters: Exception and File Handling in Python and Stack, by breaking down
the syllabus objectives against textbook content. The alignment between
a prescribed syllabus and its corresponding textbook is a foundation
of effective pedagogical delivery, shaping the depth, consistency, and
applicability of knowledge. It adopts an evaluative framework, examining
aspects such as conceptual coverage, theoretical depth, alignment with syllabus and
textbook, and content assessment gaps. Further, the paper explores whether the
textbook adequately bridges theoretical constructs (e.g., LIFO principles in
stacks) with real-world applications as planned by COHSEM. The analysis
is contextualized within larger educational directives, such as curriculum
design eftectiveness, resource effective use, and the cultivation of industry-
relevant skills in an evolving scenario. The study aims to inform educators,
policymakers, and textbook developers to promote improvements that
enhance student preparedness for higher education and technological
careers. The following investigates methodological thoroughness, sectional
comparisons, and actionable recommendations, ultimately contributing to

education quality in higher secondary schooling systems.

Finally, in the field of education, the important relationship between
curricular guidelines, syllabus, and prescribed textbook content is
necessary to have good education, considering the aim and objective of

the course of education.

Objective of the Study:
The study is to

1. Compare the coverage, depth, alignment, and gaps between the
prescribed syllabus and the content of the textbook of Computer
Science prescribed by COHSEM.

2. Propose the feedback so as to get more aligned in the future

Research Question

The research questions of the study were as under:

204

1. Is teaching computer science at the higher secondary level aligned with

the specific objectives that were designed in the curriculum?

2. Are the textbooks of computer science for XII aligned with the
syllabus of COHSEM?

LITERATURE R EVIEW

Curriculum-textbook alignment is a central theme in educational research,
particularly in technical and STEM education domains. Alignment ensures
that the educational materials, including textbooks, reflect the competencies
and outcomes stated in the curriculum (Smith, 2020). Williams (2022)
emphasizes the importance of pedagogical strategies that prioritize
curriculum alignment with practical content in programming education.
The author asserts that programming instruction must integrate real-world
problem-solving exercises, such as exception handling and data structures,

which are often inadequately covered in traditional textbooks.

Krippendorff (2018) provides a methodological foundation for
analysing alignment through content analysis. His framework, applied
in various educational evaluations, focuses on four essential dimensions:
coverage, depth, alignment, and gaps. These dimensions are instrumental
in identifying discrepancies between prescribed learning outcomes and

instructional content.

Moreover, Brown and Lee (2019) explore the impact of misalignment
in STEM subjects, revealing that inadequate representation of essential
programming concepts like exception handling and file manipulation
hinders students’ ability to debug code and understand abstract
programming paradigms. Their findings echo concerns highlighted by
Zhu (2020), who argues that excluding advanced Python concepts such
as user-defined exceptions limits students’ capacity for writing modular,

maintainable programs.

Another important contribution is from Guo (2018), who critiques
Python textbooks for focusing excessively on syntax at the expense of
application and logic-building skills. His findings suggest that many
school-level textbooks fail to keep pace with the rapid advancement of
Python versions and libraries. This gap contributes to a mismatch between
curriculum expectations and textbook content, particularly when newer

Python features (e.g., context managers, enhanced error handling) are

Vol. XXIII, No. XXVI, ISSN No. 2347-4777 (Peer-Reviewed, UGC-CARE listed Journal) 205

International Journal of Cultural Studies and Social Sciences

absent from learning materials. Ericson (2021) also points to the necessity
of incorporating multimedia and hands-on learning tools to enhance
textbook-based learning. She advocates for blended resources that reinforce
curriculum content through visual programming tools and interactive
exercises. This approach, if integrated with prescribed syllabi, could address
some of the identified instructional gaps.

In the Indian context, Gupta and Sharma (2021) conducted a study
on curriculum alignment in secondary computer science education and
found significant misalignments, particularly in emerging areas such as data
serialization (e.g., Pickle module) and exception handling. They emphasize
that the curriculum often prescribes topics with minimal depth, leaving

textbooks to over- or under-compensate.

Lastly, Smith (2020) conducted a cross-national analysis of STEM
curriculum-textbook alignment and found that many educational boards,
including those in developing countries, tend to have static syllabi that
do not adapt to evolving technological landscapes. He recommends
regular curriculum reviews and textbook updates to maintain alignment,

particularly in programming education.

METHODOLOGY

This study employs a qualitative content analysis approach through
documentary analysis to evaluate the alignment between COHSEM’s
syllabus and the prescribed textbook. Data sources include the official
syllabus document and the Class XII Python textbook authorized by
COHSEM. The analysis focused on the first two chapters: Exception and
File Handling in Python (Chapter 1) and Stack Implementation (Chapter 2).

The methodology was structured around four analytical categories
derived from Krippendorft’s (2018) framework:

1. Coverage:Whethersyllabus-mandated topicsareincludedinthe textbook.
2. Depth: The extent of elaboration (e.g., subtopics, code examples).

3. Alignment: Direct correspondence between syllabus subtopics and

textbook sections.

4. Gaps: Syllabus topics are absent or more in the textbook.

206

COMPARATIVE ANALYSIS OF SYLLABUS AND TEXTBOOK CONTENT

The alignment between educational syllabi and prescribed textbooks plays
a pivotal role in ensuring interrelated and effective learning outcomes. This
paper examines the relationship between the first two syllabus chapters—
Exception and File Handling in Python (Table 1) and Stack (Table 2)—
and their corresponding textbook chapters, focusing on four critical
dimensions: area coverage, depth of content, alignment, and identified
gaps. Through this analysis, key insights emerge about the strengths and
limitations of both resources, offering actionable recommendations for

bridging inconsistencies.

R ESULTS AND ANALYSIS

Table 1: Comparative analysis of Chapter 1 of the prescribed syllabus and
content of the prescribed textbook of COHSEM

Topic/Subtopic in the Textbook Content in the prescribed
prescribed Syllabus textbook

Chapter 1: Exception and file Chapter 1: Exception Handling in Python
Handling in Python

Exception Handling 1.1 Introduction
- Syntax Errors 1.2 Syntax Errors
-Exception 1.3 Exception

- Need for Exception Handling | 1.4 Built-in Exceptions

- User-Defined Exceptions 1.5 Raising Exceptions
- Raising Exceptions 1.5.1 The raise Statement
1.5.2 The assert Statement

- Handling Exceptions 1.6 Handling Exceptions
- Catching Exceptions 1.6.1 Need for Exception Handling
- Try-Except-Else Clause 1.6.2 Process of Handling Exception

1.6.3 Catching Exceptions
1.6.4 try...except...else Clause

- Try-Finally Clause 1.7 Finally Clause

- Recovering and Continuing 1.7.1 Recovering And Continuing With
With Finally Finally Clause

- Built-in Exceptions

Vol. XXIII, No. XXVI, ISSN No. 2347-4777 (Peer-Reviewed, UGC-CARE listed Journal) 207

International Journal of Cultural Studies and Social Sciences

File Handling

Chapter 2: File Handling in Python

2.1 Introduction To Files

- Text file and Binary Files

2.2.1 Text File
2.2.2 Binary Files

- File type

2.2 Types of Files

- Open and Close files

2.3 Opening And Closing a Text File
2.3.1 Opening a File
2.3.2 Closing a File
2.3.3 Opening a File Using With
Clause

- Reading and Writing Text Files

2.4 Writing to a Text File
2.4.1 The write() method
2.4.2 The writelines() method
2.5 Reading From A Text File
2.5.1 The read() method
2.5.2 The readline ([n]) method
2.5.3 The readlines () method

- Reading and Writing Binary

Files using Pickle module

2.8 The Pickle Module
2.8.1" The dump () method
2.8.2 The load () method
2.8.3 File handling using pickle
module

- File Access Modes

THE OBSERVATION OF CHAPTER I, EXCEPTION AND

HANDLING IN PYTHON ARE:

Area Coverage

FiLE

The syllabus for Exception and File Handling consolidates two broad

topics—exception handling and file operations—into a single chapter. It

introduces foundational concepts such as syntax errors, exception, user-

defined exceptions, and file input/output operations, including the use of

the Pickle module. In contrast, the textbook dedicates separate chapters to

these topics, allowing for a more expansive exploration. For instance, the

textbook’s Exception Handling chapter goes into refined subtopics like

the raise and assert statements, while the File Handling chapter elaborates

on file modes (e.g., with clause) and distinct methods for reading/writing

208

text and binary files. This bifurcation enables the textbook to cover a wider
range of subtopics, such as the mechanics of the dump() and load() methods

in Pickle, which are only lightly mentioned in the syllabus.

Depth of Content:

A notable distinction lies in the depth of content. The syllabus
for Exception and File Handling often lists topics at a conceptual level
(e.g.,“User-Defined Exceptions”) without elaborating on implementation
details. Conversely, the textbook adopts a procedural approach, breaking
down processes like raising exceptions into (e.g., 1.5.1 The raising
statement; 1.5.2 The assert statement) also exception handling into discrete
steps (e.g.,“1.6.1 Need for Exception Handling;1.6.2 Process of Handling
Exception; 1.6.3 Catching Exceptions”) and distinguishing between
methods such as read (), readline (), and readlines ().This quality
of composition trains learners with actionable knowledge but highlights a
gap in the syllabus, which omits critical details like the assert statement.
Also, the file access modes which was present in the syllabus are absent in

the textbook, creating loopholes in the syllabus and the textbook.

Alignment:

Alignment between the syllabus and textbook is strongest in areas
where topics directly overlap. For Exception Handling, subtopics like
syntax errors, built-in exceptions, and try-finally clauses are well-
matched. Similarly, the syllabus’s coverage of file handling aligns with
textbook sections on text/binary files and the Pickle module. However,
inconsistencies emerge in areas such as “File Access Modes,” a syllabus topic
with no clear textbook counterpart, and the textbook’s detailed subsection
on “Recovering and Continuing with Finally,” which is only implicitly

referenced in the syllabus.

Identified Gaps:

The analysis reveals gaps in both resources. For Exception and File
Handling, the syllabus omits the assert statement and lacks clarity on
file access modes, while the textbook neglects to explicitly categorize

“User-Defined Exceptions” as a standalone subtopic.

Table 2: Comparative analysis of Chapter 2 of the prescribed syllabus and
content of the prescribed textbook of COHSEM.

Vol. XXIII, No. XXVI, ISSN No. 2347-4777 (Peer-Reviewed, UGC-CARE listed Journal) 209

International Journal of Cultural Studies and Social Sciences

Topic/Subtopic of the prescribed | Textbook Content of Chapter 3,
Syllabus Chapter 2, Stack Stack

Introduction to Stack (LIFO Operations) | 3.1 Introduction

3.2 Stack
3.2.1 Application of Stack
Operations on Stack 3.3 Operations on Stack
- PUSH and POP 3.3.1 PUSH and POP Operation
Implementation in Python 3.4 Implementation of Stack in
Python

Expressions in Prefix, Infix, Postfix | 3.5 Notations for Arithmetic
notations Expressions

Evaluating arithmetic expressions using | 3.7 Evaluation of Postfix Expression
stack

Conversion of Infix expression to| 3.6 Conversion From INFIX to
Postfix expression POSTFIX Notation

THE OBSERVATION OF CHAPTER 2, STACK IMPLEMENTATION ARE
AS FOLLOW

Area Cover:

Similarly, for Stack, the syllabus outlines core concepts like LIFO
operations, Python-based implementations, and arithmetic expression
conversions. However, the textbook extends its coverage to include
practical applications of stacks, such as evaluating postfix expressions,
which are absent in the syllabus. While both resources address fundamental
operations (e.g., PUSH/POP), the textbook’s inclusion of real-world use

cases enriches the learner’s contextual understanding.

Depth of Content:

For Stack, the syllabus adequately explains operations and implementations
but lacks depth in illustrating how stacks are applied in computational
problems. The textbook compensates for this by dedicating sections
to stack applications (e.g., expression evaluation) and conversion
algorithms (e.g., infix to postfix), thereby fostering a deeper, application-
oriented understanding.

210

Alignment:

In Stack, alignment is evident in discussions of LIFO operations and
implementation in Python. Yet, the syllabus oversees the textbook’s
emphasis on stack applications (e.g., “Application of Stack” in 3.2.1),
creating a disconnect between theoretical and practical learning.
Additionally, a formatting inconsistency in Table 2 and some missing topics
in the textbook compared with the syllabus show there is misalignment,

suggesting oversight in syllabus design.

Identified Gaps:

For Stack, the syllabuss exclusion of stack applications limits learners’
ability to contextualize concepts, whereas the textbook’s use of alternative
terminology (e.g., “Notations for Arithmetic Expressions” instead of
“Prefix/Infix/Postfix”’) may cause confusion to the learner which give
gaps in the syllabus and textbook.

FINDING

The findings reveal an inconsistent outlook. While the textbook excels in
clarifying syntax and basic operations, it hesitates in addressing advanced
topics and contextual applications. The finding also contrasts with broader
trends in programming education, where textbooks often prioritize rote
syntax mastery over problem-solving and critical thinking (Guo, 2018).
For instance, the absence of User-Defined Exceptions continues a fragmented
understanding of error handling, limiting students’ ability to design

software, and it gives a gap between the syllabus and the textbook.

To reduce these gaps, educators must adopt supplementary strategies.
Integrating open-source resources like Python’s official documentation
or interactive platforms such as Codecademy could bridge knowledge
voids (Resnick et al., 2009). Furthermore, the study found that curriculum
designers must advocate for textbook revisions that incorporate emerging
topics (e.g., context managers for file handling) and pedagogical innovations
like case studies also it limits with its narrow focus on the first two chapters
and exclusion of pedagogical methods like assessments—invite future
research where longitudinal studies and tracking student performance

against curriculum-textbook alignment could yield actionable insights.

Vol. XXIII, No. XXVI, ISSN No. 2347-4777 (Peer-Reviewed, UGC-CARE listed Journal) 211

International Journal of Cultural Studies and Social Sciences

FEEDBACK ON IMPROVING SYLLABUS-TEXTBOOK ALIGNMENT

Ensuring close alignment between the prescribed syllabus and textbook
content is essential for effective curriculum delivery. To achieve better
alignment in future textbook editions, several focused strategies can be
adopted. First, it is crucial to begin with a detailed topic-by-topic mapping
that directly matches each syllabus subtopic with planned textbook
content. This step can prevent common oversights, such as the omission of
User-Defined Exceptions and File Access Modes, which were found missing in

the current edition.

Textbook headings should closely reflect the terminology used in the
syllabus. This allows students and teachers to easily trace and connect the
content to curriculum expectations. Additionally, including a “Syllabus
Link” table at the beginning of each chapter—outlining the prescribed
topics, corresponding textbook sections, and learning outcomes—can
significantly enhance clarity and usability. Textbooks should also ensure that
they address all levels of cognitive demand outlined in the syllabus. Beyond
basic definitions, students need examples, applications, and opportunities
for analysis and problem-solving to build a comprehensive understanding.
Teacher involvement is another key area. Engaging classroom educators
in the review process brings practical insights that can improve content
relevance and pedagogical alignment. Moreover, adding brief “Syllabus
Expectation” summaries at the start of each section helps maintain
instructional focus. Lastly, establishing a regular review and update process
based on classroom feedback and syllabus changes will ensure the textbook

remains current and aligned over time.

In summary, aligning textbooks more closely with the syllabus requires
intentional planning, clear structure, practical feedback loops, and ongoing
revision. These steps will make textbooks more effective tools for both

teaching and learning.

CONCLUSION

The comparative analysis of the two chapters—Exception and File Handling
and Stack— reveals a disorder and confused ordering of the syllabus, showing
a gap in alignment between the prescribed syllabus and the textbook content.
The chapter on Stack shows partial misalignment, with all syllabus topics

covered and content structured in the textbook. In addition, the chapter

212

on Exception and File Handling also exhibits partial alignment. While most
topics are addressed in sufficient depth, key subtopics such as User-Defined
Exceptions and File Access Modes are missing, leading to content gaps. Overall,
the study highlights the need for more consistent and comprehensive syllabus
coverage, particularly in the Exception and File Handling chapter, to ensure

students receive complete and accurate instruction.

References

Brown, A., & Lee, J. (2019). Programming Education: Challenges and
Innovations. Springer.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to
Algorithms (3rd ed.). MIT Press.

Ericson, B. (2021). Introduction to Computing and Programming in Python: A
Multimedia Approach. Pearson.

Guo, P.J. (2018). Python for Data Analysis: A Critical Toolkit. O’Reilly Media.

Gupta, R., & Sharma, P. (2021). Curriculum alignment in Indian computer
science textbooks: A case study. International Journal of Educational
Technology, 8(1), 44-58.

Krippendorft, K. (2018). Content Analysis: An Introduction to Its
Methodology (4th ed.). Sage.

Laaksonen, A. (2017). Guide to Competitive Programming: Learning and Improving
Algorithms Through Contests. Springer.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond,
E., Brennan, K., ... & Kafai, Y. (2009). Scratch: Programming for All.
Communications of the ACM, 52(11), 60-67.

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley.

Smith, T. (2020). Curriculum-"Textbook Alignment in STEM Education. Journal of
Educational Research, 45(3), 112—-129.

Williams, J. (2022). Pedagogical Strategies in Python Education: A Global Perspective.
International Journal of Computer Science Education, 17(2), 89-104.

Zhu, H. (2020). Advanced Python Programming: Building ~ Robust
Applications. Packt Publishing.

Vol. XXIII, No. XXVI, ISSN No. 2347-4777 (Peer-Reviewed, UGC-CARE listed Journal) 213

